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Abstract— We harness the energy minimization aspects of
the quantum-dot cellular automata (QCA) computing model
to synthesize QCA circuits to solve the vision problem of per-
ceptual grouping. Unlike logic computing, vision computing
problems are error-tolerant, but are hard to solve on existing
computing platforms. The cost of failure of not finding the
optimal solution is not high; even solutions that are close
to optimal can suffice. The problem of perceptual grouping
concerns with selecting, based on Gestaltic perceptual cues,
salient subsets of low-level features, such as straight line
boundary segments, that are most likely to belong to objects
in the scene. We formulate a method to map this problem,
which can be cast in terms of energy minimization, onto an
arrangement of QCA cells. The QCA cells correspond to the
straight lines, and the kink energies between them model the
Gestaltic cue affinities. The magnitude of the polarizations of
the QCA cells denote the saliency of the corresponding image
features. We use classical multi-dimensional scaling (MDS)
to synthesize the QCA cell layout. We demonstrate the ability
of this arrangement to compute salient groups in real images
by simulating the QCA layout using iterative, self consistent
analysis, based on the Hartree-Fock approximation.

Index Terms— QCA circuits, nanocomputing, energy min-
imization, computer vision

I. INTRODUCTION

Quantum-dot cellular automata (QCA) [1] have po-
tential for radically different form of computing. Recent
advances in molecular implementations [2], which will
enable room temperature operation, is particularly exciting.
Although there are many open scientific and technical
challenges at device level, strong case can be and has
been made for also conducting circuits and systems level
research in parallel. Understanding the types of circuits
that need to be built and problems that can be solved with
it will provide new directions for device-level research.

Unlike most work on QCA circuits that seeks to repli-
cate traditional computing involving logic and arithmetic
operations [3], [4], we consider computing scenarios where
we can harness the energy minimizing aspects of QCA
operations. One such context is the mid-level computer
vision problem of perceptual grouping, which can be cast
as an energy minimization problem. These minimization
problems are computationally hard to solve on traditional
computers. In this paper, we explore the possibility of
mapping the vision minimization problem onto the QCA

minimization problem, such that the ground state of the
QCA arrangement gives us the solution to the vision
problem. One attractive aspect of the perceptual grouping
problem is that it is an error-tolerant application, where
the cost of failure of not finding the optimal solution is
not high; even solutions that are close to optimal ones
suffices in practice. This aspect is significant in light of
the expectation that nano-domain computing is expected
to be error prone.

Although QCAs have not been used for image pro-
cessing, arrays of quantum-dot (QD) arrays have been
explored for solving image processing applications [5].
However, unlike image processing that deals with image
pixels arranged in a regular gird, mid-level vision algo-
rithms deals with symbolic representations, arranged in
an irregular grid. The computational expense of image
processing arise due to the sheer large number of pixels
involved. The complexity of the operations themselves are
rather simple. Therefore, there are many fast architectures
with traditional CMOS based computing devices for low-
level processing. In contrast, mid-level vision algorithms
are inherently computationally complex.

We arrive at the mapping between the vision problem
of grouping and the QCA layout by observing that the
aggregate energy minimized by the ground state of the
QCA circuit is a function of the spatial arrangement. This,
we summarize in Section II. The problem of perceptual
grouping and its energy minimization formulation is de-
scribed in Section III. Given pairwise energies between
image primitives or tokens, we have to find the spatial
arrangement of QCA cells, each representing an image
primitive, whose Coulombic interaction best approximates
the grouping energies. In Section IV, we draw upon the
statistical body of work on Multi-Dimensional Scaling
(MDS) [6] to synthesize the energy minimizing QCA
“circuit” layout. We present results of QCA circuit simu-
lations, solving the grouping problem, in Section V. We
conclude with Section VI.

II. QCA ARRAYS AS ENERGY MINIMIZING ENGINES

The operation of a QCA cell can be abstracted in a
fairly simple manner. Each QCA cell consists of one or
more electrons that can exist in two or more dots, with two
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ground states configurations that can be taken to represent
the logic states of zero or one. Two or more cells interact
by Coulombic interaction, with an arrangement of cells
settling to the lowest energy state. The QCA computing
model is based on mapping the computed logic onto to
the ground state, i.e. minimum energy state, of arrays of
quantum-dot cells.

Following Tougaw and Lent [7] and other subsequent
works on QCA, we use the two-state approximate model
of a single QCA cell. An array of cells can be modeled
fairly well by considering cell-level quantum entangle-
ment of the two states and just Coulombic interaction
between nearby cells, modeled using the Hartee-Fock
(HF) approximation [7]. We denote the eigenstates of a
cell corresponding to the 2-states by |0〉 and |1〉. The
state at time t, which is referred to as the wave-function
and denoted by |Ψ(t)〉, is a linear combination of these
two states, i.e. |Ψ(t)〉 = c0(t)|0〉 + c1(t)|1〉. Each cell
polarization is defined to the difference of probabilities of
the two states, δ = |c0|2 � |c1|2. The Hamiltonian of the
i-th cell, given by [7]

Hi =
[ � 1

2

∑
j 6=iE

k
ijδj �γ

�γ 1
2

∑
j 6=q E

k
ijδi

]
(1)

where the sums along the diagonal are over the neighbor-
ing cells, computing the average effective polarizations of
the neighbors. The tunneling energy between the two states
of a cell, which is controlled by the clocking mechanism,
is denoted by γ. Ekij is the “kink energy” or the energy cost
of two cells having opposite polarizations, as determined
by Coulombic interaction.

An equivalent representation of the cell wave function
can be formulated in terms of δ and a quantum me-
chanical phase angle  using the transformations: c0 =√

(1 + δ)/2 and c1 =
√

(1 � δ)/2eiψ . It can be shown
that the energy (expectation of the Hamiltonian) of each
cell is given by [8]

Ei = �2γcos( )
√

(1 � δ2i ) � δi
∑
j 6=i

Ekijδj (2)

The total energy of the system is given by E =
∑
iEi.

E = �2γcos( )
∑
i

√
(1 � δ2i ) �

∑
i

∑
j 6=i

Ekijδiδj (3)

Dissipation to the environment adsorbs excess energy and
minimizes the energy of the system towards a steady
state, where  = 0. By increasing or decreasing γ, the
tunneling energy, one can control which of the two energy
terms dominate the minimization. This γ is controlled
by the clocking signal. But increasing it, the steady state
polarization of a cell can be driven to zero. We can use this
effect to deselect cells in a regular QCA grid arrangement
to implement the synthesized layout. For the selected cells,
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Fig. 1. Levels of processing involved in a solution to the problem of
object recognition in computer vision. Samples of data involved at each
level are shown. The goal for the image shown is to find buildings in the
images.

the γ will be close to zero and the second term will
dominate the minimization. Or equivalently, the following
energy functional is maximized.

Ê =
∑
i

∑
j 6=i

Ekijδiδj (4)

It is a quadratic cost term involving pairwise kink energies
that are determined by the relative locations between the
cells. By controlling the placement of the cells these
pairwise kink energy terms can be made to match the
problem at hand. We outline an approach for this process
in Section IV. But, before that we look at the problem of
perceptual grouping.

III. THE TASK OF PERCEPTUAL ORGANIZATION

Object recognition from images is one of the primary
goals of computer vision. As illustrated in Fig. 1, this
involves three basic kinds of processes. The low-level
process extracts low-level primitives such as edge pixels,
extended edge structures such as straight line segments and
arcs, region patches, or image pixel based local measures.
High-level processes are concerned with the problem of
inferring object match or pose, given a subset of the low-
level features found in an image. The intermediate level
is concerned with forming the low-level feature subsets to
be input to the high-level process. A brute selection of all
possible subsets of N features will result in exponential
complexity. Fig. 1 shows an example of the best grouping
that one can find in the edge image, with each group
corresponding to a building. The mid-level perceptual
grouping process are vital in controlling the combinatorics
of the vision problems. Similar processes are also impart
robustness to the human visual system.

We consider the specific version of the perceptual group-
ing problem of grouping straight line segments found in
the edge images. One illustration of the input is shown in
Fig. 2(a). The task is to select the subset of the straight
line features that are most likely to come from an object,
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Fig. 2. (a) An arrangement of straight lines found in an image that
needs to be separated into object and background features. (b) Spatial
layout of the line tokens synthesized by classical MDS based on the
Gestalt energies. (c) Arrangement QCA cells, with each cell representing
a straight line token, to match the underlying Gestalt energies. The
polarization of the cells at the ground state are depicted.

without the knowledge of the specific object identity.
Some of the principles that are used to group features are
based on the findings of the Gestalt school of psychology,
who found that groups that exhibit symmetry, similarity,
proximity, closure, and continuity are salient. Perceptual
grouping can be formulated as an energy minimization
problem [9], [10]. We represent a group using the vector
x, whose i-th component, xi, is 1 if fi is part of the group
and xi = 0 if it is not. Between every pair of straight line
we associate affinity energies, Aij to capture the perceptual
saliency of the relationship between them. For example, if
two straight lines are parallel to each other then according
to the Gestalt principles they are likely to belong to one
object and hence the affinity should be high. Similarly,
lines that are close together are more likely to associated
together, i.e. the proximity principle. Lines that form one
straight arrangement are also likely to be grouped, i.e.
the continuity principle. The quantitative forms of the
affinity function varies in different implementation, but
qualitatively they capture similar aspects. The particular
form we use is

Aij =
√
lilje

−
oij

max(li,lj) e
−

dmin
max(li,lj) sin2(2θij) (5)

where li and lj are the lengths of the i-th and j-th features,
oij is the overlap, θij is the angle, and dmin is the
minimum distance between the two straight lines. We can
see that this form of the affinity function agrees with the
strengths of the Gestalt affinities that we want to model.

The goal is to find a group, x, such that total affinity
energy is maximized.

A =
∑
i

∑
j 6=i

Aijxixj (6)

IV. SYNTHESIS OF ENERGY MINIMIZING QCA
CIRCUIT LAYOUT

We can notice the correspondence between the objective
function for the grouping problem (Eq. 6) and that the
energy function for an QCA circuit (Eq. 4). Each low-
level primitive or token, fi, can be represented by a QCA
cell, whose polarization magnitude, |δi| would determine
the membership in the salient grouping, xi. Given pairwise
affinity energies between N low-level primitives, how do
we embed the corresponding QCA cells in a two (or
three) dimensional space so that the distance between
them would result in Coulombic kink energies that is
proportional to the Gestalt affinities? For this we use the
statistical method of multidimensional scaling [6], which
is commonly used to embed distance matrices in low-
dimension spaces and have so far been used extensively
for data visualization. Let N image tokens have pairwise
affinity energies specified by fAijg between them. The
goal of multidimensional scaling (MDS) is to find a con-
figuration of points, representing these tokens, in a p = 2
or 3 dimensional space such that the distance between
two points r and s, denoted by drs, will be proportional
to � log(Aij). If QCA cells are placed at these point
coordinates then the pairwise interaction between them
will be proportional to the given energies, i.e. EQCAij ∝
exp(log(Aij)) ∝ Aij ; we have found that fall off in
kink energy with distance can be approximated well by
an exponential function. Let the matrix Λ be constructed
out of given energies such that: Λij = d2

rs. We desire
to find the coordinate of each point in a p dimensional
match, which we denote by the matrix of coordinate vector,
XMDS = [x1, � � � ,xN ], such that

(xi � xj)T (xi � xj) = cΛrs (7)

or equivalently

XT
MDSXMDS = �c1

2
HΛH, where H = (I� 1

N
~1~1T )

(8)
with I as the identity matrix and ~1 as the vector of
ones. This operator H is referred to as the centering
operator. These coordinates X can be arrived at by sin-
gular value decomposition of the centered distance matrix
1
2HΛH = VMDS�MDSVT

MDS where VMDS , �MDS

are the eigenvectors and eigenvalues respectively. Assum-
ing that centered distance matrix represents the inner
product distances of an Euclidean distance matrix, the
coordinates which are given by

XMDS = (VMDS�
1
2
MDS)T (9)

Note that we have dropped the constant of proportionality,
c, since the energy minimizing solutions are invariant to
scaling of the original function.



V. RESULTS

For the simple arrangement of straight lines in Fig. 2(a)
the embedding of the corresponding QCA cells in a
2D space is shown in Fig. 2(b); if the QCA cells are
placed at these locations, the Coulombic interactions will
be proportional to the Gestalt energies. Fig. 2(c) shows
the polarization of the QCA cells in the ground state
configurations. The extent of the polarization, δi, denotes
participation of the corresponding straight line in the
salient group. We see that the central 3 QCA cells, which
correspond to the 3 parallel lines, are fully polarized.

In Fig. 3 we present result on one real image among the
many we have tested. The low-level edges that are to be
grouped are shown in Fig. 3(b). Each straight line segment
(not shown) detected in the edge map is represented by a
corresponding QCA cell. The synthesized layout to match
the corresponding Gestaltic grouping energy are shown in
Fig. 3(d). The location of each cell is marked by a cross
and the corresponding ground state polarization values are
shown as spikes associated with each cell. The ground
state was computed by self consistent analysis based on the
Hartree-Fock approximation. Fig. 3(c) highlight the edges
corresponding to the highly polarized QCA cells. Notice
how the salient edges corresponding to the dominant
objects in the scene, such as the mailbox and building
facade, are separated from the background clutter.

VI. CONCLUSION

We have presented a novel context for nanocomputing
with QCAs that exploits their energy minimization aspects.
Vision computing is an error-tolerant application that can
tolerate near optimal solutions. In particular, we considered
the problem of perceptual grouping that is computationally
hard to solve on traditional computers. We presented a
method for synthesizing energy minimization QCA circuits
to solve the grouping problem and demonstrated their ef-
fectiveness using iterative, self-consistent analysis Hartree-
Fock simulations. Results on real images are promising.

This is just the first step in designing a novel form of
QCA “circuits.” There are, of course, many issues that
need to be considered in future. For instance, the layout
of the QCA cells are dependent on the specific instance
of the energy minimization problem. One would have
to consider building the required QCA arrangement by
deselecting cells from a regular arrangement of cells. We
are looking into using the clocking mechanism for this.
Read-out of the cell polarizations is also another issue, for
which are looking into constructing a solution based on
layered QCAs [11].
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